Advertisement

Biomarker guided treatment in oncogene-driven advanced non-small cell lung cancer in older adults: A Young International Society of Geriatric Oncology report

  • Author Footnotes
    1 Shared first authorship.
    Konstantinos Christofyllakis
    Correspondence
    Corresponding author at: Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Saarland University Medical Center, Kirrbergerst. 100, 66421 Homburg, Germany.
    Footnotes
    1 Shared first authorship.
    Affiliations
    Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Saarland University Medical Center, Homburg, Germany
    Search for articles by this author
  • Author Footnotes
    1 Shared first authorship.
    Ana Raquel Monteiro
    Footnotes
    1 Shared first authorship.
    Affiliations
    Medical Oncology Department, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal

    Multidisciplinary Thoracic Tumors Unit – Pulmonology Department, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal
    Search for articles by this author
  • Onur Cetin
    Affiliations
    Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Saarland University Medical Center, Homburg, Germany
    Search for articles by this author
  • Igor Age Kos
    Affiliations
    Department of Hematology, Oncology, Clinical Immunology and Rheumatology, Saarland University Medical Center, Homburg, Germany
    Search for articles by this author
  • Author Footnotes
    2 Shared senior authorship.
    Alastair Greystoke
    Footnotes
    2 Shared senior authorship.
    Affiliations
    Northern Centre for Cancer Care, Newcastle-upon-Tyne NHS Foundation trust, Newcastle, UK
    Search for articles by this author
  • Author Footnotes
    2 Shared senior authorship.
    Andrea Luciani
    Footnotes
    2 Shared senior authorship.
    Affiliations
    Department of Medical Oncology, Ospedale di Treviglio- ASST Bergamo Ovest, Treviglio, Italy
    Search for articles by this author
  • Author Footnotes
    1 Shared first authorship.
    2 Shared senior authorship.

      Abstract

      Lung cancer remains the leading cause of cancer-related deaths worldwide, with most patients diagnosed at an advanced age. The treatment of non-small cell lung cancer (NSCLC) has been revolutionized with the introduction of molecular guided therapy. Despites the challenges when considering treatment of older adults, they are still systematically underrepresented in registrational trials. This review aims to summarize the existing evidence on treatment of older patients with lung cancer with a targetable driver mutation or alteration (EGFR, ALK, ROS, BRAFV600E, MET, RET, KRASG12C and NTRK), and consider the evidence from a geriatric oncology perspective. Early generation EGFR-tyrosine kinase inhibitors (TKIs). TKIs are fairly well-studied in older adults and have been shown to be safe and efficient. However, older adult-specific data regarding the standard-of-care first-line agent osimertinib are lacking. Erlotinib, dacomitinib, and afatinib may be more toxic than other EGFR-TKIs. Next generation ALK-TKIs are preferred over crizotinib due to increased efficacy, as demonstrated in phase III trials. Alectinib seems to be safer than crizotinib, while brigatinib is associated with increased toxicity. Lorlatinib overcomes most resistance mutations, but data regarding this agent have only recently emerged. Regarding ROS1-fusion positive NSCLC, crizotinib is an option in older adults, while entrectinib is similarly effective but shows increased neurotoxicity. In BRAFV600E-mutant NSCLC, the combination darbafenib/tramectinib is effective, but no safety data for older adults exist. MET alterations can be targeted with capmatinib and tepotinib, and registrational trials included primarily older patients, due to the association of this alteration with advanced age. For RET-rearranged-NSCLC selpercatinib and pralsetinib are approved, and no differences in safety or efficacy between older and younger patients were shown. KRASG12C mutations, which are more frequent in older adults, became recently druggable with sotorasib, and advanced age does not seem to affect safety or efficacy. In NTRK-fusion positive tumors, larotrectinib and entrectinib have tumor agnostic approval, however, not enough data on older patients are available. Based on currently available data, molecularly-guided therapy for most alterations is safe and efficacious in older adults with oncogene-driven advanced NSCLC. However, for many TKIs, older adult-specific data are lacking, and should be subject of future prospective evaluations.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Geriatric Oncology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • World Health Organization
        (Accessed April 3, 2021)
        • GLOBOCAN. International Agency for Research on Cancer
        GLOBOCAN: estimated cancer incidence, mortality and prevalence worldwide in 2020.
        (Accessed April 3, 2021)
        • National Cancer Institute
        Surveillance, epidemiology, and end results program – Lung and bronchus cancer — Cancer stat facts.
        (Accessed April 4, 2021)
        • Balducci L.
        Aging, frailty, and chemotherapy.
        Cancer Control. 2007; 14: 7-12https://doi.org/10.1177/107327480701400102
        • Jørgensen T.L.
        • Hallas J.
        • Land L.H.
        • Herrstedt J.
        Comorbidity and polypharmacy in elderly cancer patients: the significance on treatment outcome and tolerance.
        J Geriatr Oncol. 2010; 1: 87-102https://doi.org/10.1016/j.jgo.2010.06.003
        • Hurria A.
        • Lichtman S.M.
        Pharmacokinetics of chemotherapy in the older patient.
        Cancer Control. 2007; 14: 32-43https://doi.org/10.1177/107327480701400105
        • Cardoso Evelina
        • Guidi M.
        • Khoudour N.
        • et al.
        Population pharmacokinetics of erlotinib in patients with non–small cell lung cancer: its application for individualized dosing regimens in older patients.
        Clin Ther. 2020; 42: 1302-1316https://doi.org/10.1016/J.CLINTHERA.2020.05.008
        • Talarico L.
        • Chen G.
        • Pazdur R.
        Enrollment of elderly patients in clinical trials for cancer drug registration: a 7-year experience by the US Food and Drug Administration.
        J Clin Oncol. 2004; 22: 4626-4631https://doi.org/10.1200/JCO.2004.02.175
        • DuMontier C.
        • Loh K.P.
        • Bain P.A.
        • et al.
        Defining Undertreatment and overtreatment in older adults with cancer: a scoping literature review.
        J Clin Oncol. 2020; 38: 2558-2569https://doi.org/10.1200/JCO.19.02809
        • Ganti A.K.
        • Klein A.B.
        • Cotarla I.
        • Seal B.
        • Chou E.
        Update of incidence, prevalence, survival, and initial treatment in patients with non–small cell lung cancer in the US.
        JAMA Oncol. October 2021; https://doi.org/10.1001/jamaoncol.2021.4932
        • Molina J.R.
        • Yang P.
        • Cassivi S.D.
        • Schild S.E.
        • Adjei A.A.
        Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship.
        in: Mayo clinic proceedings. Vol. 83. Elsevier Ltd, 2008: 584-594https://doi.org/10.4065/83.5.584
        • Barlesi F.
        • Mazieres J.
        • Merlio J.P.
        • et al.
        Routine molecular profiling of patients with advanced non-small-cell lung cancer: Results of a 1-year nationwide programme of the French Cooperative Thoracic Intergroup (IFCT).
        Lancet. 2016; 387: 1415-1426https://doi.org/10.1016/S0140-6736(16)00004-0
        • Imielinski M.
        • Berger A.H.
        • Hammerman P.S.
        • et al.
        Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing.
        Cell. 2012; 150: 1107-1120https://doi.org/10.1016/j.cell.2012.08.029
        • Hammerman P.S.
        • Voet D.
        • Lawrence M.S.
        • et al.
        Comprehensive genomic characterization of squamous cell lung cancers.
        Nature. 2012; 489: 519-525https://doi.org/10.1038/nature11404
        • Hanna N.H.
        • Robinson A.G.
        • Temin S.
        • et al.
        Therapy for stage IV non–small-cell lung cancer with driver alterations: ASCO and OH (CCO) joint guideline update.
        J Clin Oncol. 2021; 39: 1040-1091https://doi.org/10.1200/jco.20.03570
      1. Clinical practice living guidelines – Metastatic non-small-cell lung cancer | ESMO.
        (Accessed April 5, 2021)
        • Planchard D.
        • Popat S.
        • Kerr K.
        • et al.
        Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.
        ESMO Guidel Comm. 2018; 29: iv192-iv237https://doi.org/10.1093/annonc/mdy275
        • Lindeman N.I.
        • Cagle P.T.
        • Aisner D.L.
        • et al.
        Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors guideline from the college of American pathologists, the international association for the study of lung cancer, and the association for molecular pathology.
        in: Archives of pathology and laboratory medicine. Vol. 142. College of American Pathologists, 2018: 321-346https://doi.org/10.5858/arpa.2017-0388-CP
        • Mosele F.
        • Remon J.
        • Mateo J.
        • et al.
        Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group.
        Ann Oncol. 2020; 31: 1491-1505https://doi.org/10.1016/j.annonc.2020.07.014
        • Results C.T.
        Osimertinib in elderly patients with epidermal growth factor receptor T790M-positive non-small-cell lung cancer who progressed during prior treatment: a phase II trial.
        Oncologist. 2019; https://doi.org/10.1634/theoncologist.2019-0003
        • Hakozaki T.
        • Matsuo T.
        • Shimizu A.
        • Ishihara Y.
        • Hosomi Y.
        Polypharmacy among older advanced lung cancer patients taking EGFR tyrosine kinase inhibitors.
        J Geriatr Oncol. 2020; https://doi.org/10.1016/j.jgo.2020.09.011
        • Mitsudomi T.
        • Morita S.
        • Yatabe Y.
        • et al.
        Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial.
        Lancet Oncol. 2010; 11: 121-128https://doi.org/10.1016/S1470-2045(09)70364-X
        • Maemondo M.
        • Inoue A.
        • Kobayashi K.
        • et al.
        Gefitinib or chemotherapy for non–small-cell lung cancer with mutated EGFR.
        N Engl J Med. 2010; 362: 2380-2388https://doi.org/10.1056/nejmoa0909530
        • Maemondo M.
        • Minegishi Y.
        • Inoue A.
        • et al.
        First-line gefitinib in patients aged 75 or older with advanced non-small cell lung cancer harboring epidermal growth factor receptor mutations: NEJ 003 study.
        J Thorac Oncol. 2012; 7: 1417-1422https://doi.org/10.1097/JTO.0b013e318260de8b
        • Zhou X.
        • Shou J.
        • Sheng J.
        • et al.
        Molecular and clinical analysis of Chinese patients with anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer.
        Cancer Sci. 2019; 110: 3382-3390https://doi.org/10.1111/cas.14177
        • Kuwako T.
        • Imai H.
        • Masuda T.
        • et al.
        First-line gefitinib treatment in elderly patients (aged ≥75 years) with non-small cell lung cancer harboring EGFR mutations.
        Cancer Chemother Pharmacol. 2015; 76: 761-769https://doi.org/10.1007/s00280-015-2841-5
        • Narumi S.
        • Inoue A.
        • Morikawa N.
        • et al.
        First-line gefitinib for elderly patients with advanced non-small cell lung cancer (NSCLC) harboring EGFR mutations: a combined analysis of NEJ studies.
        J Clin Oncol. 2012; 30: 7563https://doi.org/10.1200/jco.2012.30.15_suppl.7563
        • Nakao A.
        • Hiranuma O.
        • Uchino J.
        • Sakaguchi C.
        Final results from a phase II trial of osimertinib for elderly patients with epidermal growth factor receptor t790m-positive non-small cell lung cancer that progressed during previous treatment.
        J Clin Med. 2020; 9: 1-12
        • Rosell R.
        • Carcereny E.
        • Gervais R.
        • et al.
        Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial.
        Lancet Oncol. 2012; 13: 239-246https://doi.org/10.1016/S1470-2045(11)70393-X
        • Wu Y.L.
        • Zhou C.
        • Liam C.K.
        • et al.
        First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study.
        Ann Oncol. 2015; 26: 1883-1889https://doi.org/10.1093/annonc/mdv270
        • Inoue Y.
        • Inui N.
        • Asada K.
        • et al.
        Phase II study of erlotinib in elderly patients with non-small cell lung cancer harboring epidermal growth factor receptor mutations.
        Cancer Chemother Pharmacol. 2015; 76: 155-161https://doi.org/10.1007/s00280-015-2784-x
        • Miyamoto S.
        • Azuma K.
        • Ishii H.
        • et al.
        Low-dose erlotinib treatment in elderly or frail patients with EGFR mutation-positive non-small cell lung cancer: a multicenter phase 2 trial.
        JAMA Oncol. 2020; 6: 1-7https://doi.org/10.1001/jamaoncol.2020.1250
        • Bigot F.
        • Boudou-Rouquette P.
        • Arrondeau J.
        • et al.
        Erlotinib pharmacokinetics: a critical parameter influencing acute toxicity in elderly patients over 75 years-old.
        Invest New Drugs. 2017; 35: 242-246https://doi.org/10.1007/s10637-016-0400-5
        • Wheatley-Price P.
        • Ding K.
        • Seymour L.
        • Clark G.M.
        • Shepherd F.A.
        Erlotinib for advanced non-small-cell lung cancer in the elderly: an analysis of the National Cancer Institute of Canada Clinical Trials Group Study BR.21.
        J Clin Oncol. 2008; 26: 2350-2357https://doi.org/10.1200/JCO.2007.15.2280
        • Sequist L.V.
        • Yang J.C.H.
        • Yamamoto N.
        • et al.
        Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations.
        J Clin Oncol. 2013; 31: 3327-3334https://doi.org/10.1200/JCO.2012.44.2806
        • Wu Y.
        • Zhou C.
        • Hu C.
        • et al.
        Afatinib versus cisplatin plus gemcitabine for fi rst-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial.
        Lancet Oncol. 2014; 15: 213-222https://doi.org/10.1016/S1470-2045(13)70604-1
        • Tan E.
        • Byrne K.O.
        • Zhang L.
        • et al.
        Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: overall survival data from the phase IIb.
        Ann Oncol. 2017; : 270-277https://doi.org/10.1093/annonc/mdw611
        • Trials L.
        • Wu Y.
        • Sequist L.V.
        • et al.
        Afatinib as first-line treatment of older patients with EGFR mutation-positive non-small-cell lung cancer: subgroup analyses of the.
        Clin Lung Cancer. 2018; 19: e465-e479https://doi.org/10.1016/j.cllc.2018.03.009
        • Popat S.
        • Hughes L.
        • O’Brien M.
        • et al.
        P3.02b-046 Afatinib benefits patients with confirmed/suspected EGFR mutant NSCLC, unsuitable for chemotherapy (TIMELY phase II trial).
        J Thorac Oncol. 2017; 12: S1215-S1216https://doi.org/10.1016/j.jtho.2016.11.1713
        • Minegishi Y.
        • Yamaguchi O.
        • Sugawara S.
        • Kuyama S.
        • Watanabe S.
        • Usui K.
        A phase II study of first-line afatinib for patients aged ≥ 75 years with EGFR mutation-positive advanced non-small cell lung cancer: North East Japan Study Group.
        BMC Cancer. 2021; : 1-10
        • Imai H.
        • Kaira K.
        • Suzuki K.
        • et al.
        SC.
        Lung Cancer. 2018; https://doi.org/10.1016/j.lungcan.2018.10.014
        • Mok T.S.
        • Cheng Y.
        • Zhou X.
        • et al.
        Improvement in overall survival in a randomized study that compared dacomitinib with Ge fi tinib in patients with advanced non – small-cell lung cancer and EGFR – activating mutations.
        J Clin Oncol. 2019; 36https://doi.org/10.1200/JCO.2018.78.7994
        • Ramalingam S.S.
        • Vansteenkiste J.
        • Planchard D.
        • et al.
        Overall survival with osimertinib in untreated, EGFR -mutated advanced NSCLC.
        N Engl J Med. 2020; 382: 41-50https://doi.org/10.1056/nejmoa1913662
        • Mok T.S.
        • Wu Y.-L.
        • Ahn M.-J.
        • et al.
        Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer.
        N Engl J Med. 2017; 376: 629-640https://doi.org/10.1056/nejmoa1612674
        • Diagnostics M.
        • Cancer A.
        Efficacy and safety data of osimertinib in elderly patients with NSCLC who harbor the EGFR T790M mutation after failure of initial EGFR-TKI treatment.
        Anticancer Res. 2018; 5237: 5231-5237https://doi.org/10.21873/anticanres.12847
        • Lee C.K.
        • Wu Y.L.
        • Ding P.N.
        • et al.
        Impact of specific Epidermal Growth Factor Receptor (EGFR) mutations and clinical characteristics on outcomes after treatment with EGFR tyrosine kinase inhibitors versus chemotherapy in EGFR-mutant lung cancer: a meta-analysis.
        J Clin Oncol. 2015; 33: 1958-1965https://doi.org/10.1200/JCO.2014.58.1736
        • Roviello G.
        • Zanotti L.
        • Rosa M.
        • et al.
        Are EGFR tyrosine kinase inhibitors effective in elderly patients with EGFR-mutated non-small cell lung cancer?.
        Clin Exp Med. 2017; https://doi.org/10.1007/s10238-017-0460-7
        • Corre R.
        • Gervais R.
        • Guisier F.
        • Tassy L.
        • Vinas F.
        Octogenarians with EGFR-mutated non-small cell lung cancer treated by tyrosine-kinase inhibitor: a multicentric real-world study assessing tolerance and efficacy (OCTOMUT study).
        Oncotarget. 2018; 9: 8253-8262
        • Sciences H.
        Appetite loss as an adverse effect during treatment with EGFR-TKIs in elderly patients with non-small cell lung cancer.
        Anticancer Res. 2016; 4954: 4951-4954https://doi.org/10.21873/anticanres.11062
        • Park K.
        • Haura E.B.
        • Leighl N.B.
        • et al.
        Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study.
        J Clin Oncol. 2021; 39: 3391-3402https://doi.org/10.1200/JCO.21.00662
        • Solomon B.J.
        • Mok T.
        • Kim D.-W.
        • et al.
        First-line crizotinib versus chemotherapy in ALK -positive lung cancer.
        N Engl J Med. 2014; 371: 2167-2177https://doi.org/10.1056/nejmoa1408440
        • Ueno N.
        • Banno S.
        • Endo Y.
        • et al.
        Treatment status and safety of crizotinib in 2028 Japanese patients with ALK-positive NSCLC in clinical settings.
        Jpn J Clin Oncol. 2019; 49: 676-686https://doi.org/10.1093/jjco/hyz049
        • Peters S.
        • Camidge D.R.
        • Shaw A.T.
        • et al.
        Alectinib versus crizotinib in untreated ALK -positive non–small-cell lung cancer.
        N Engl J Med. 2017; 377: 829-838https://doi.org/10.1056/nejmoa1704795
        • Mok T.
        • Camidge D.R.
        • Gadgeel S.M.
        • et al.
        Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study.
        Ann Oncol. 2020; 31: 1056-1064https://doi.org/10.1016/j.annonc.2020.04.478
        • Hida T.
        • Nokihara H.
        • Kondo M.
        • et al.
        Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): an open-label, randomised phase 3 trial.
        Lancet. 2017; 390: 29-39https://doi.org/10.1016/S0140-6736(17)30565-2
        • Camidge D.R.
        • Kim H.R.
        • Ahn M.-J.
        • et al.
        Brigatinib versus crizotinib in ALK -positive non–small-cell lung cancer.
        N Engl J Med. 2018; 379: 2027-2039https://doi.org/10.1056/nejmoa1810171
        • Camidge D.R.
        • Kim H.R.
        • Ahn M.J.
        • et al.
        Brigatinib versus crizotinib in advanced ALK inhibitor–naive ALK-positive non–small cell lung cancer: second interim analysis of the phase III ALTA-1L Trial.
        J Clin Oncol. 2020; 38 (American Society of Clinical Oncology): 3592-3603https://doi.org/10.1200/JCO.20.00505
        • Soria J.C.
        • Tan D.S.W.
        • Chiari R.
        • et al.
        First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): a randomised, open-label, phase 3 study.
        Lancet. 2017; 389: 917-929https://doi.org/10.1016/S0140-6736(17)30123-X
        • Shaw A.T.
        • Bauer T.M.
        • de Marinis F.
        • et al.
        First-line lorlatinib or crizotinib in advanced ALK -positive lung cancer.
        N Engl J Med. 2020; 383: 2018-2029https://doi.org/10.1056/nejmoa2027187
        • Shaw A.T.
        • Ou S.-H.I.
        • Bang Y.-J.
        • et al.
        Crizotinib in ROS1 – rearranged non–small-cell lung cancer.
        N Engl J Med. 2014; 371: 1963-1971https://doi.org/10.1056/nejmoa1406766
        • Mazières J.
        • Rouvière D.
        • Milia J.
        • et al.
        Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: Results from the EUROS1 cohort.
        J Clin Oncol. 2015; 33: 992-999https://doi.org/10.1200/JCO.2014.58.3302
        • Wu Y.L.
        • Yang J.C.H.
        • Kim D.W.
        • et al.
        Phase II study of crizotinib in east asian patients with ROS1-positive advanced non–small-cell lung cancer.
        J Clin Oncol. 2018; 36 (American Society of Clinical Oncology): 1405-1411https://doi.org/10.1200/JCO.2017.75.5587
        • Park S.
        • Ahn B.C.
        • Lim S.W.
        • et al.
        Characteristics and outcome of ROS1-positive non–small cell lung cancer patients in routine clinical practice.
        J Thorac Oncol. 2018; 13: 1373-1382https://doi.org/10.1016/j.jtho.2018.05.026
        • Moro-Sibilot D.
        • Cozic N.
        • Pérol M.
        • et al.
        Crizotinib in c-MET- or ROS1-positive NSCLC: results of the AcSé phase II trial.
        Ann Oncol. 2019; 30: 1985-1991https://doi.org/10.1093/annonc/mdz407
        • Michels S.
        • Massutí B.
        • Schildhaus H.U.
        • et al.
        Safety and efficacy of crizotinib in patients with advanced or metastatic ROS1-rearranged lung Cancer (EUCROSS): a European phase II clinical trial.
        J Thorac Oncol. 2019; 14: 1266-1276https://doi.org/10.1016/j.jtho.2019.03.020
        • Landi L.
        • Chiari R.
        • Tiseo M.
        • et al.
        Crizotinib in MET-deregulated or ROS1-rearranged pretreated non–small cell lung cancer (METROS): a phase II, prospective, multicenter, two-arms trial.
        Clin Cancer Res. 2019; 25: 7312-7319https://doi.org/10.1158/1078-0432.CCR-19-0994
        • Liu C.
        • Yu H.
        • Chang J.
        • et al.
        Crizotinib in Chinese patients with ROS1-rearranged advanced non–small-cell lung cancer in routine clinical practice.
        Target Oncol. 2019; 14: 315-323https://doi.org/10.1007/s11523-019-00636-6
        • Vuong H.G.
        • Nguyen T.Q.
        • Nguyen H.C.
        • Nguyen P.T.
        • Ho A.T.N.
        • Hassell L.
        Efficacy and safety of crizotinib in the treatment of advanced non-small-cell lung cancer with ROS1 rearrangement or MET alteration: a systematic review and meta-analysis.
        Target Oncol. 2020; 15: 589-598https://doi.org/10.1007/s11523-020-00745-7
        • Frost N.
        • Christopoulos P.
        • Kauffmann-Guerrero D.
        • et al.
        Lorlatinib in pretreated ALK- or ROS1-positive lung cancer and impact of TP53 co-mutations: results from the German early access program.
        Ther Adv Med Oncol. 2021; 13https://doi.org/10.1177/1758835920980558
        • Lee J.
        • Sun J.M.
        • Lee S.H.
        • et al.
        Efficacy and safety of lorlatinib in Korean non–small-cell lung cancer patients with ALK or ROS1 rearrangement whose disease failed to respond to a previous tyrosine kinase inhibitor.
        Clin Lung Cancer. 2019; 20: 215-221https://doi.org/10.1016/j.cllc.2018.12.020
        • Hochmair M.J.
        • Fabikan H.
        • Illini O.
        • et al.
        Later-line treatment with lorlatinib in alk-and ros1-rearrangement-positive nsclc: a retrospective, multicenter analysis.
        Pharmaceuticals. 2020; 13: 1-15https://doi.org/10.3390/ph13110371
        • Zhu V.W.
        • Lin Y.T.
        • Kim D.W.
        • et al.
        An international real-world analysis of the efficacy and safety of lorlatinib through early or expanded access programs in patients with tyrosine kinase inhibitor–refractory ALK-positive or ROS1-positive NSCLC.
        J Thorac Oncol. 2020; 15: 1484-1496https://doi.org/10.1016/j.jtho.2020.04.019
        • Shaw A.T.
        • Solomon B.J.
        • Chiari R.
        • et al.
        Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1–2 trial.
        Lancet Oncol. 2019; 20: 1691-1701https://doi.org/10.1016/S1470-2045(19)30655-2
        • Shaw A.T.
        • Felip E.
        • Bauer T.M.
        • et al.
        Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial.
        Lancet Oncol. 2017; 18: 1590-1599https://doi.org/10.1016/S1470-2045(17)30680-0
        • Peled N.
        • Gillis R.
        • Kilickap S.
        • et al.
        GLASS: global Lorlatinib for ALK(+) and ROS1(+) retrospective study: real world data of 123 NSCLC patients.
        Lung Cancer. 2020; 148: 48-54https://doi.org/10.1016/j.lungcan.2020.07.022
        • Planchard D.
        • Kim T.M.
        • Mazieres J.
        • et al.
        Dabrafenib in patients with BRAFV600E-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial.
        Lancet Oncol. 2016; 17: 642-650https://doi.org/10.1016/S1470-2045(16)00077-2
        • Planchard D.
        • Besse B.
        • Groen H.J.M.
        • et al.
        Dabrafenib plus trametinib in patients with previously treated BRAFV600E-mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial.
        Lancet Oncol. 2016; 17: 984-993https://doi.org/10.1016/S1470-2045(16)30146-2
        • Planchard D.
        • Smit E.F.
        • Groen H.J.M.
        • et al.
        Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial.
        Lancet Oncol. 2017; 18: 1307-1316https://doi.org/10.1016/S1470-2045(17)30679-4
        • Li J.
        • Sasane M.
        • Zhao J.
        • et al.
        Comparative efficacy of treatments for previously treated advanced or metastatic non-small-cell lung Cancer: a network meta-analysis.
        Adv Ther. 2018; 35: 1035-1048https://doi.org/10.1007/s12325-018-0734-9
        • Veluswamy R.
        • Mack P.C.
        • Houldsworth J.
        • Elkhouly E.
        • Hirsch F.R.
        KRAS G12C–mutant non–small cell lung cancer.
        J Mol Diagn. 2021; 23: 507-520https://doi.org/10.1016/j.jmoldx.2021.02.002
        • Liu Y.
        • Li H.
        • Zhu J.
        • et al.
        The prevalence and concurrent pathogenic mutations of krasg12c in northeast Chinese non-small-cell lung cancer patients.
        Cancer Manag Res. 2021; 13: 2447-2454https://doi.org/10.2147/CMAR.S282617
        • Hong D.S.
        • Fakih M.G.
        • Strickler J.H.
        • et al.
        KRAS G12C inhibition with sotorasib in advanced solid tumors.
        N Engl J Med. 2020; 383: 1207-1217https://doi.org/10.1056/nejmoa1917239
        • Skoulidis F.
        • Li B.T.
        • Dy G.K.
        • et al.
        Sotorasib for lung cancers with KRAS p.G12C mutation.
        N Engl J Med. 2021; 384: 2371-2381https://doi.org/10.1056/NEJMoa2103695
        • Sharma S.V.
        • Bell D.W.
        • Settleman J.
        • Haber D.A.
        Epidermal growth factor receptor mutations in lung cancer.
        Nat Rev Cancer. 2007; 7: 169-181https://doi.org/10.1038/nrc2088
        • Kawada I.
        • Soejima K.
        Screening of epidermal growth factor receptor mutation in lung cancer.
        Respir Circ. 2008; 56: 617-622https://doi.org/10.1056/nejmoa0904554
        • Nishii T.
        • Yokose T.
        • Miyagi Y.
        • et al.
        Clinicopathological features and EGFR gene mutation status in elderly patients with resected non-small-cell lung cancer.
        BMC Cancer. 2014; 14: 610https://doi.org/10.1186/1471-2407-14-610
        • Ueno T.
        • Toyooka S.
        • Suda K.
        • et al.
        Impact of age on epidermal growth factor receptor mutation in lung cancer.
        Lung Cancer. 2012; 78: 207-211https://doi.org/10.1016/j.lungcan.2012.09.006
        • Imyanitov E.N.
        • Demidova I.A.
        • Gordiev M.G.
        • et al.
        Distribution of EGFR mutations in 10,607 Russian patients with lung cancer.
        Mol Diagnosis Ther. 2016; 20: 401-406https://doi.org/10.1007/s40291-016-0213-4
        • Wu S.-G.
        • Chang Y.-L.
        • Yu C.-J.
        • Yang P.-C.
        • Shih J.-Y.
        Lung adenocarcinoma patients of young age have lower EGFR mutation rate and poorer efficacy of EGFR tyrosine kinase inhibitors.
        ERJ Open Res. 2017; 3: 00092-02016https://doi.org/10.1183/23120541.00092-2016
        • Choi Y.H.
        • Lee J.K.
        • Kang H.J.
        • et al.
        Association between age at diagnosis and the presence of EGFR mutations in female patients with resected non-small cell lung cancer.
        J Thorac Oncol. 2010; 5: 1949-1952https://doi.org/10.1097/JTO.0b013e3181f38816
        • Lemmon M.A.
        • Schlessinger J.
        • Ferguson K.M.
        The EGFR family: not so prototypical receptor tyrosine kinases.
        Cold Spring Harb Perspect Biol. 2014; 6https://doi.org/10.1101/cshperspect.a020768
        • Sequist L.V.
        • Waltman B.A.
        • Dias-Santagata D.
        • et al.
        Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors.
        Sci Transl Med. 2011; 3https://doi.org/10.1126/scitranslmed.3002003
        • Remon J.
        • Steuer C.E.
        • Ramalingam S.S.
        • Felip E.
        Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients.
        Ann Oncol. 2018; 29: i20-i27https://doi.org/10.1093/annonc/mdx704
        • Wu J.Y.
        • Yu C.J.
        • Shih J.Y.
        Effectiveness of treatments for advanced non–small-cell lung cancer with exon 20 insertion epidermal growth factor receptor mutations.
        Clin Lung Cancer. 2019; 20: e620-e630https://doi.org/10.1016/J.CLLC.2019.06.018
        • Mok T.S.
        • Wu Y.-L.
        • Thongprasert S.
        • et al.
        Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma.
        N Engl J Med. 2009; 361: 947-957https://doi.org/10.1056/nejmoa0810699
        • Zhou C.
        • Wu Y.L.
        • Chen G.
        • et al.
        Final overall survival results from a randomised, phase III study of erlotinib versus chemotherapy as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL, CTONG-0802).
        Ann Oncol. 2015; 26: 1877-1883https://doi.org/10.1093/annonc/mdv276
        • Soria J.-C.
        • Ohe Y.
        • Vansteenkiste J.
        • et al.
        Osimertinib in untreated EGFR -mutated advanced non–small-cell lung cancer.
        N Engl J Med. 2018; 378: 113-125https://doi.org/10.1056/nejmoa1713137
        • Fukuoka M.
        • Wu Y.L.
        • Thongprasert S.
        • et al.
        Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non – small-cell lung cancer in Asia (IPASS).
        J Clin Oncol. 2011; 29: 2866-2874https://doi.org/10.1200/JCO.2010.33.4235
        • Kobayashi K.
        • Inoue A.
        • Usui K.
        • et al.
        First-line gefitinib for patients with advanced non-small-cell lung cancer harboring epidermal growth factor receptor mutations without indication for chemotherapy.
        J Clin Oncol. 2009; 27: 1394-1400https://doi.org/10.1200/JCO.2008.18.7658
        • Yoshioka H.
        • Komuta K.
        • Imamura F.
        • Kudoh S.
        • Seki A.
        • Fukuoka M.
        Efficacy and safety of erlotinib in elderly patients in the phase IV POLARSTAR surveillance study of Japanese patients with non-small-cell lung cancer.
        Lung Cancer. 2014; 86: 201-206https://doi.org/10.1016/j.lungcan.2014.09.015
        • Yang J.C.
        • Hirsh V.
        • Schuler M.
        • et al.
        Symptom control and quality of life in LUX-lung 3: a phase III study of Afatinib or Cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations.
        J Clin Oncol. 2021; 31https://doi.org/10.1200/JCO.2012.46.1764
        • Mok T.
        • Cheng Y.
        • Zhou X.
        • et al.
        Dacomitinib versus gefitinib for the first-line treatment of advanced EGFR mutation positive non-small cell lung cancer (ARCHER 1050): a randomized, open-label phase III trial.
        J Clin Oncol. 2017; 35: LBA9007https://doi.org/10.1200/jco.2017.35.18_suppl.lba9007
        • Tsao M.S.
        • Hirsch F.R.
        • Yatabe Y.
        International association for the study of lung cancer iaslc atlas of alk and ros1 testing in lung cancer.
        2nd ed. Editorial Rx Press, North Fort Myers, FL2016
        • Li T.
        • Maus M.K.H.
        • Desai S.J.
        • et al.
        Large-scale screening and molecular characterization of EML4-ALK fusion variants in archival non-small-cell lung cancer tumor specimens using quantitative reverse transcription polymerase chain reaction assays.
        J Thorac Oncol. 2014; 9: 18-25https://doi.org/10.1097/JTO.0000000000000030
        • Soda M.
        • Choi Y.L.
        • Enomoto M.
        • et al.
        Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer.
        Nature. 2007; 448: 561-566https://doi.org/10.1038/nature05945
        • Kim H.R.
        • Shim H.S.
        • Chung J.H.
        • et al.
        Distinct clinical features and outcomes in never-smokers with nonsmall cell lung cancer who harbor EGFR or KRAS mutations or ALK rearrangement.
        Cancer. 2012; 118: 729-739https://doi.org/10.1002/cncr.26311
        • Sacher A.G.
        • Dahlberg S.E.
        • Heng J.
        • Mach S.
        • Jänne P.A.
        • Oxnard G.R.
        Association between younger age and targetable genomic alterations and prognosis in non-small-cell lung cancer.
        JAMA Oncol. 2016; 2: 313-320https://doi.org/10.1001/jamaoncol.2015.4482
        • Shaw A.T.
        • Yeap B.Y.
        • Mino-Kenudson M.
        • et al.
        Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK.
        J Clin Oncol. 2009; 27: 4247-4253https://doi.org/10.1200/JCO.2009.22.6993
        • Kim T.-J.
        • Park C.K.
        • Yeo C.D.
        • et al.
        Simultaneous diagnostic platform of genotyping EGFR, KRAS, and ALK in 510 Korean patients with non-small-cell lung cancer highlights significantly higher ALK rearrangement rate in advanced stage.
        J Surg Oncol. 2014; 110: 245-251https://doi.org/10.1002/jso.23646
        • Gainor J.F.
        • Dardaei L.
        • Yoda S.
        • et al.
        Molecular mechanisms of resistance to first-and second-generation ALK inhibitors in ALK-rearranged lung cancer HHS public access.
        Cancer Discov. 2016; 6: 1118-1133https://doi.org/10.1158/2159-8290.CD-16-0596
        • Solomon B.J.
        • Kim D.W.
        • Wu Y.L.
        • et al.
        Final overall survival analysis from a study comparing first-line crizotinib versus chemotherapy in alk-mutation-positive non–small-cell lung cancer.
        J Clin Oncol. 2018; 36: 2251-2258https://doi.org/10.1200/JCO.2017.77.4794
        • Solomon B.J.
        • Besse B.
        • Bauer T.M.
        • et al.
        Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study.
        Lancet Oncol. 2018; 19: 1654-1667https://doi.org/10.1016/S1470-2045(18)30649-1
        • Suh C.H.
        • Kim K.W.
        • Pyo J.
        • Hatabu H.
        • Nishino M.
        The incidence of ALK inhibitor-related pneumonitis in advanced non-small-cell lung cancer patients: a systematic review and meta-analysis.
        Lung Cancer. 2019; 132: 79-86https://doi.org/10.1016/j.lungcan.2019.04.015
        • Jin Y.
        • Xu Z.
        • Yan H.
        • He Q.
        • Yang X.
        • Luo P.
        A comprehensive review of clinical cardiotoxicity incidence of FDA-approved small-molecule kinase inhibitors.
        Front Pharmacol. 2020; 11https://doi.org/10.3389/fphar.2020.00891
        • Bergethon K.
        • Shaw A.T.
        • Ou S.H.I.
        • et al.
        ROS1 rearrangements define a unique molecular class of lung cancers.
        J Clin Oncol. 2012; 30: 863-870https://doi.org/10.1200/JCO.2011.35.6345
        • Rikova K.
        • Guo A.
        • Zeng Q.
        • et al.
        Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung Cancer.
        Cell. 2007; 131: 1190-1203https://doi.org/10.1016/j.cell.2007.11.025
        • Roskoski R.
        ROS1 protein-tyrosine kinase inhibitors in the treatment of ROS1 fusion protein-driven non-small cell lung cancers.
        Pharmacol Res. 2017; 121: 202-212https://doi.org/10.1016/j.phrs.2017.04.022
        • Drilon A.
        • Siena S.
        • Dziadziuszko R.
        • et al.
        Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: integrated analysis of three phase 1–2 trials.
        Lancet Oncol. 2020; 21: 261-270https://doi.org/10.1016/S1470-2045(19)30690-4
      2. Roche. Rozlytrek (entrectinib). https://www.ema.europa.eu/en/documents/product-information/rozlytrek-epar-product-information_en.pdf. Accessed May 14, 2021.

        • Cho B.C.
        • Lim S.M.
        • Kim H.R.
        • et al.
        Open-label, multicenter, phase II study of ceritinib in patients with non–small-cell lung cancer harboring ROS1 rearrangement.
        J Clin Oncol. 2017; 35: 2613-2618https://doi.org/10.1200/JCO.2016.71.3701
        • Shaw A.T.
        • Felip E.
        • Bauer T.M.
        • et al.
        Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial.
        Lancet Oncol. 2017; 18: 1590-1599https://doi.org/10.1016/S1470-2045(17)30680-0
        • Tissot C.
        • Couraud S.
        • Tanguy R.
        • Bringuier P.P.
        • Girard N.
        • Souquet P.J.
        Clinical characteristics and outcome of patients with lung cancer harboring BRAF mutations.
        Lung Cancer. 2016; 91: 23-28https://doi.org/10.1016/j.lungcan.2015.11.006
        • Mazieres J.
        • Cropet C.
        • Montané L.
        • et al.
        Vemurafenib in non-small-cell lung cancer patients with BRAFV600 and BRAFnonV600 mutations.
        Ann Oncol. 2020; 31: 289-294https://doi.org/10.1016/j.annonc.2019.10.022
        • Subbiah V.
        • Gervais R.
        • Riely G.
        • et al.
        Efficacy of vemurafenib in patients with non-small-cell lung cancer with BRAF V600 mutation: an open-label, single-arm cohort of the histology-independent VE-BASKET study.
        JCO Precis Oncol. 2019; 3: 1-9https://doi.org/10.1200/PO.18.00266
        • García-Castaño A.
        • González-Barrallo I.
        • Rubio V.E.C.
        • et al.
        1118P retrospective analysis of safety in elderly BRAF V600 mutation-positive advanced melanoma patients treated with dabrafenib (D) and trametinib (T) and correlation with non-elderly patients.
        Ann Oncol. 2020; 31: S753https://doi.org/10.1016/j.annonc.2020.08.1241
        • Vuong H.G.
        • Ho A.T.N.
        • Altibi A.M.A.
        • Nakazawa T.
        • Katoh R.
        • Kondo T.
        Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer – a systematic review and meta-analysis.
        Lung Cancer. 2018; 123: 76-82https://doi.org/10.1016/j.lungcan.2018.07.006
        • Awad M.M.
        • Oxnard G.R.
        • Jackman D.M.
        • et al.
        MET exon 14 mutations in Non-small-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression.
        J Clin Oncol. 2016; 34: 721-730https://doi.org/10.1200/JCO.2015.63.4600
        • Wolf J.
        • Seto T.
        • Han J.-Y.
        • et al.
        Capmatinib in MET exon 14–mutated or MET -amplified non–small-cell lung cancer.
        N Engl J Med. 2020; 383: 944-957https://doi.org/10.1056/nejmoa2002787
        • Paik P.K.
        • Felip E.
        • Veillon R.
        • et al.
        Tepotinib in non–small-cell lung cancer with MET exon 14 skipping mutations.
        N Engl J Med. 2020; 383: 931-943https://doi.org/10.1056/nejmoa2004407
        • Michels S.
        • Scheel A.H.
        • Scheffler M.
        • et al.
        Clinicopathological characteristics of RET rearranged lung cancer in European patients.
        J Thorac Oncol. 2016; 11: 122-127https://doi.org/10.1016/j.jtho.2015.09.016
        • Wang R.
        • Hu H.
        • Pan Y.
        • et al.
        RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer.
        J Clin Oncol. 2012; 30: 4352-4359https://doi.org/10.1200/JCO.2012.44.1477
        • Gautschi O.
        • Milia J.
        • Filleron T.
        • et al.
        Targeting RET in patients with RET-rearranged lung cancers: results from the global, multicenter RET registry.
        J Clin Oncol. 2017; 35: 1403-1410https://doi.org/10.1200/JCO.2016.70.9352
        • Tsuta K.
        • Kohno T.
        • Yoshida A.
        • et al.
        RET-rearranged non-small-cell lung carcinoma: a clinicopathological and molecular analysis.
        Br J Cancer. 2014; 110: 1571-1578https://doi.org/10.1038/bjc.2014.36
        • Drilon A.
        • Oxnard G.R.
        • Tan D.S.W.
        • et al.
        Efficacy of selpercatinib in RET fusion–positive non–small-cell lung cancer.
        N Engl J Med. 2020; 383: 813-824https://doi.org/10.1056/nejmoa2005653
      3. Lilly, Retevmo (Selpercatinib).
        (Accessed May 14, 2021)
        • Gainor J.F.
        • Curigliano G.
        • Kim D.W.
        • et al.
        Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study.
        Lancet Oncol. 2021; 22: 959-969https://doi.org/10.1016/S1470-2045(21)00247-3
      4. Roche. Gavreto (pralsetinib). https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/214701s000lbl.pdf. Accessed May 14, 2021.

        • Prior I.A.
        • Hood F.E.
        • Hartley J.L.
        The frequency of ras mutations in cancer.
        Cancer Res. 2020; 80: 2669-2974https://doi.org/10.1158/0008-5472.CAN-19-3682
        • Prior I.A.
        • Lewis P.D.
        • Mattos C.
        A comprehensive survey of ras mutations in cancer.
        Cancer Res. 2012; 72: 2457-2467https://doi.org/10.1158/0008-5472.CAN-11-2612
        • Dearden S.
        • Stevens J.
        • Wu Y.L.
        • Blowers D.
        Mutation incidence and coincidence in non small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap).
        Ann Oncol. 2013; 24: 2371-2376https://doi.org/10.1093/annonc/mdt205
        • Riely G.J.
        • Marks J.
        • Pao W.
        KRAS mutations in non-small cell lung cancer.
        in: Proceedings of the American Thoracic Society. Vol. 6. 2009: 201-205https://doi.org/10.1513/pats.200809-107LC
        • Karachaliou N.
        • Mayo C.
        • Costa C.
        • et al.
        KRAS mutations in lung cancer.
        Clin Lung Cancer. 2013; 14: 205-214https://doi.org/10.1016/j.cllc.2012.09.007
        • Araujo L.H.
        • Souza B.M.
        • Leite L.R.
        • et al.
        Molecular profile of KRAS G12C-mutant colorectal and non-small-cell lung cancer.
        BMC Cancer. 2021; 21: 1-8https://doi.org/10.1186/s12885-021-07884-8
        • Amgen
        Lumakras (sotorasib).
        (Accessed June 27, 2021)
        • Solomon J.P.
        • Benayed R.
        • Hechtman J.F.
        • Ladanyi M.
        Identifying patients with NTRK fusion cancer.
        Ann Oncol. 2019; 30: VIII16-VIII22https://doi.org/10.1093/annonc/mdz384
        • Cocco E.
        • Scaltriti M.
        • Drilon A.
        NTRK fusion-positive cancers and TRK inhibitor therapy.
        Nat Rev Clin Oncol. 2018; 15: 731-747https://doi.org/10.1038/s41571-018-0113-0
        • Farago A.F.
        • Taylor M.S.
        • Doebele R.C.
        • et al.
        Clinicopathologic features of non–small-cell lung cancer harboring an NTRK gene fusion.
        JCO Precis Oncol. 2018; 2018: 1-12https://doi.org/10.1200/po.18.00037
        • Hong D.S.
        • DuBois S.G.
        • Kummar S.
        • et al.
        Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials.
        Lancet Oncol. 2020; 21: 531-540https://doi.org/10.1016/S1470-2045(19)30856-3
        • Drilon A.
        • Laetsch T.W.
        • Kummar S.
        • et al.
        Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children.
        N Engl J Med. 2018; 378: 731-739https://doi.org/10.1056/nejmoa1714448
        • Lilly
        Vitrakvy (larotrectinib).
        (Accessed May 14, 2021)
        • Russo A.
        • Lopes A.R.
        • McCusker M.G.
        • et al.
        New targets in lung cancer (excluding EGFR, ALK, ROS1).
        Curr Oncol Rep. 2020; 22https://doi.org/10.1007/s11912-020-00909-8
        • Doebele R.C.
        • Drilon A.
        • Paz-Ares L.
        • et al.
        Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials.
        Lancet Oncol. 2020; 21: 271-282https://doi.org/10.1016/S1470-2045(19)30691-6
        • Smit E.F.
        • Nakagawa K.
        • Nagasaka M.
        • et al.
        Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-mutated metastatic non-small cell lung cancer (NSCLC): interim results of DESTINY-Lung01.
        J Clin Oncol. 2020; 38: 9504https://doi.org/10.1200/JCO.2020.38.15_SUPPL.9504
        • Horn L.
        • Wang Z.
        • Wu G.
        • et al.
        Ensartinib vs crizotinib for patients with anaplastic lymphoma kinase−positive non–small cell lung cancer: a randomized clinical trial.
        JAMA Oncol. 2021; https://doi.org/10.1001/JAMAONCOL.2021.3523